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The frequency for the first two modes of vibration of a nonhomogeneous tapered rectangular
plate is calculated under a bi linear (i.e., linear along both the axes) temperature field. For
consideration of the nonhomogeneous material, the author assumed circular variation in
Poisson’s ratio. Tapering in the plate is assumed to be linear in one direction. The results
are calculated for different values of plate parameters and presented with the help of graphs.
Comparison of the results is also given, to support the results of the present study.
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Symbols used

a, b – length and breadth of plate, respectively
ζ, ψ – coordinates in plane of plate
a/b – aspect ratio
Mζ ,Mψ – bending moment intensities in ζ and ψ directions
Mζψ – twisting moment intensity
Y – Young’s modulus
D1 – flexural rigidity
φ(ζ, ψ, t) – deflection of plate
Φ(ζ, ψ) – deflection function
ρ – mass density per unit volume of plate material
t, T (t) – time and time function
l – thickness of plate
m – nonhomogeneity constant
α – thermal gradient
β, λ – tapering and frequency parameter
ν – Poisson’s ratio

1. Introduction

The most of engineering structures such as rockets, missiles and nuclear reactors are working
under sufficient temperature fields. Due to this temperature field, these structures undergo some
vibrations. The excess of vibration causes system failure or its less efficiency. Therefore, scientists
and engineers are very much keen to optimize the vibrations of structures. For this, they study
the dynamic behavior of plates.

Amabili and Carra (2012) studied (experimentally) forced vibrations (large amplitude) of
a thin rectangular plate (made of stainless-steel) carrying different concentrated masses. They
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tested the plate vertically and horizontally to analyze the gravity effect. They used an electro-
dynamic exciter and measured the vibration using a laser Doppler vibrometer. They showed
in their results that concentrated masses do not effect in the vertical plate (trend of nonline-
arity) but effect in the horizontal plate. A comprehensive study to analyze general vibration
of rectangular orthotropic Kirchhoff plates using Trigonometry Ritz Method (TRM) was pre-
sented by Dozio (2011). The aim of this study was to extend the potential of the method on
predicting natural flexural frequencies of plates. The author showed in his study that TRM had
excellent accuracy when compared with other existing methods. Hota and Padhi (2007) applied
the first order shear deformation theory to study vibration of amalgamation of a subparametric
triangular plate. They analyzed free vibration of plates with cutouts as numerical examples. An
analytical model to analyze vibration of partially cracked rectangular (isotropic) plates coupled
with a fluid medium was proposed by Soni et al. (2018). They modified the governing equation
of motion based on the classical plate theory (CPT) and evaluated fundamental frequencies.
They also presented new results for fundamental frequencies affected by crack length, fluid level,
fluid density and immersed depth of the plate.

Joshi et al. (2014) presented a model (analytically) to analyze nonlinear vibrations of cracked
and isotropic rectangular plates. They used Galerkin’s method to evaluate the natural frequen-
cies of the plate with three different boundary conditions. They also showed that a crack parallel
to the longer side of the plate affects vibration characteristics more as compared to the crack
parallel to the shorter side. Ansari and Gupta (2003) discussed forced axisymmetric vibration of
polar orthotropic circular plates with parabolic variation in thickness. They computed deflection
and bending moments for the plate on different values of the taper, rigidity ratio and flexibility
parameter. Bayat et al. (2011) analyzed nonlinear free vibrations (large amplitude) of tapered
beams by using Max-Min Approach (MMA) and Homotopy Perturbation Method (HPM). They
compared the results obtained by MMA and HPM with the exact solution to show the effecti-
veness of the method. The study of free vibration of a square plate was presented by Sharma et
al. (2016, 2017). They showed the effect of circular variation in density and Poisson’s ratio on
vibrational frequency in two papers. In one paper, they showed that the frequency of vibration
was less in the case of circular variation in density when compared to parabolic variation in
density. In another paper, they showed that the rate of decrement in frequency modes was very
less in the case of circular variation in Poisson’s ratio.

Lam et al. (1989) presented the Rayleigh-Ritz method to study vibration of nonhomogeneous
rectangular plates. They compared the obtained results (for isotropic and orthotropic plates)
with the available results. Liew et al. (1995) provided a vast review of literature on vibration
of thick plates. They focused mainly on the study of Mindlin theory, modified Mindlin plate
theories for laminated plates and high order shear deformation plate theories. They categorized
the study by different plate shapes. Lal et al. (2010) analyzed free transverse vibrations of uniform
and nonhomogeneous rectangular plates using boundary characteristic orthogonal polynomials
in the Rayleigh-Ritz method. They evaluated free vibration on four different combinations of
clamped, simply supported and free edges. They studied linear variations in Young’s modulus
and density of the plate material and presented three dimensional mode shapes, for all the four
boundary conditions. Free transverse vibrations of nonhomogeneous rectangular (orthotropic)
plates resting on the Winkler foundation were presented by Kumar and Lal (2012) using two-
dimensional boundary characteristic orthogonal polynomials in the Rayleigh-Ritz method. They
studied the effect of linear variation in density, two dimensional linear variations in thickness
and the aspect ratio on the first three modes of vibration.

Khanna and Kaur (2014) presented an analysis of vibration of a tapered rectangular plate
(nonhomogeneous) made up of a viscoelastic material. They studied the effect of linear variation
in thickness, temperature and exponential variation in Poisson’s ratio on the frequency of vibra-
tion. As a result, they showed that frequency modes are less in the case of linear variation in
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thickness when compared to exponential variation in thickness. They also showed that bilinear
temperature variation provides less vibration as compared to exponential temperature variation.
Chen et al. (2017) investigated transverse vibration of viscoelastic Timoshenko beam columns
by using the generalized Hamilton principle. They showed the effect of length-to-depth ratio,
the axial tension and viscosity coefficients on the natural frequencies and decrement coefficients.
An asymmetric vibration of nonhomogeneous circular plates was investigated by Sharma et al.
(2017). They analyzed the effect of parabolically varying thickness in the plate and exponential
variation in Young’s modulus as well as in density along the radial direction on the natural
frequency.
In this study, the author finds the first two modes of vibration of a clamped rectangular plate

corresponding to different values of nonhomogeneity, thermal gradient and the aspect ratio of
the plate using the Rayleigh-Ritz method, based on the classical plate theory (CPT). Results
are presented with the help of figures.

2. Analysis

The differential equation for transverse motion of the plate is
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+ 2
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Substituting Eqs. (2.2) in Eq. (2.1), we get
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For the solution of Eq. (2.3), the deflection of the plate can be written as a product of the
deflection and time function as

φ(ζ, ψ, t) = Φ(ζ, ψ)T (t) (2.4)

Substituting Eq. (2.4) in Eq. (2.3), we get
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Let us denote the expression in square brackets by A. Now, by separating the variables, we get

A

ρlΦ
= −
1

T

∂2T

∂t2
= ω2 (2.6)

where the expressions of Eq. (2.6) have been set equal to the constant ω2 because they are
functions of independent variables (ζ, ψ) and t. Taking the first and last expression of Eq. (2.6),
we have

A− ρlω2Φ = 0 (2.7)

Equation (2.7) is a differential equation for transverse motion of the plate with the variable D1
and ν, i.e., the flexural rigidity and Poisson’s ratio. The expression for flexural rigidity is given
by D1 = Y l

3/[12(1 − ν2)].

3. Construction of problem

Consider a nonhomogeneous rectangular plate of length a and breadth b with one dimensional
linear variation in thickness l as shown in Fig. 1 is

l = l0
(

1 + β
ζ

a

)

(3.1)

where β (0 ¬ β ¬ 1) is known as the tapering parameter, and l is constant at ζ = 0.

Fig. 1. Rectangular plate with linear variation in thickness

For consideration of a nonhomogeneous plate material, Poisson’s ratio of the plate varies
circular in one direction as (Kumar et al., 2018)

ν = ν0

[

1 +m

(

1−

√

1−
ζ2

a2

)]

(3.2)

where ν0 is Poisson’s ratio at ζ = 0 andm (0 ¬ m ¬ 1) is known as the nonhomogeneity constant.
The plate is subjected to steady two-dimensional temperature distributions as (Sharma et al.,
2019)
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)

(3.3)
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where τ and τ0 denote the temperature excess above the reference temperature on the plate
at any point and at the origin, respectively. For most engineering materials, the temperature
dependence of the modulus of elasticity is given by the relation

Y = Y0(1− γτ) (3.4)

where Y0 is the Young’s modulus at the mentioned temperature τ = 0 and γ is called the slope
of variation.

Using Eq. (3.3), Eq. (3.4) becomes
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)]

(3.5)

where α (0 ¬ α < 1) is called the temperature gradient, which is the product of temperature at
the origin and slope of variation i.e., α = γτ0.

Using Eqs. (3.1), (3.2) and Eq. (3.5), the flexural rigidity of the plate becomes
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4. Solution of the problem

Author uses the Rayleigh-Ritz technique (i.e., maximum strain energy Vs must be equal to
maximum kinetic energy Ts) in order to obtain the frequency equation and frequencies for both
modes of vibrations. Therefore, we must have

δ(Vs − Ts) = 0 (4.1)

Here, the expression for strain energy Vs and kinetic energy Ts is given by
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Here, author is computing the frequency on the C-C-C-C condition (i.e., all edges of the plate
are clamped). Therefore, the boundary condition for the clamped plate is given by

Φ =
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The deflection function which satisfies Eq. (4.3) is taken as
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where Ω1 and Ω2 are arbitrary constants. Substituting Eqs. (3.1), (3.2) and Eq. (3.6) into Eqs.
(4.2), we get

Vs =
Y l30
24

a
∫

0

b
∫

0

















[

1− α
(

1− ζ
a

)(

1− ψ
b

)](

1 + β ζ
a

)3

1− ν20

[

1 +m
(

1−
√

1− ζ2

a2

)

]2

·







(∂2Φ

∂ζ2

)2
+
(∂2Φ

∂ψ2

)2
+ 2ν0

[

1 +m

(

1−

√

1−
ζ2

a2

)]

∂2Φ

∂ζ2
∂2Φ

∂ψ2

+ 2

(

1− ν0

[

1 +m

(

1−

√

1−
ζ2

a2

)])

( ∂2Φ

∂ζ∂ψ

)2























dψ dζ

(4.5)

and
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Now, convert ζ and ψ into nondimensional variables as
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(4.7)

Using Eq. (4.7), Eqs. (4.5) and (4.6) become
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and
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Using Eqs. (4.8) and (4.9), Eq. (4.1) is converted into

δ(V ∗s − λ
2T ∗s ) = 0 (4.10)

where λ2 = 12ρa4ω2/(Y0l
2
0) is a frequency parameter. Equation (4.10) consists of two unknown

constants Ω1 and Ω2 (because of substitution of the deflection function Φ). These two unknowns
could be computed as follows

∂

∂Ωn
(V ∗s − λ

2T ∗s ) = 0 n = 1, 2 (4.11)
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After simplifying Eq. (4.11), we get a homogeneous system of equations as

f11Ω1 + f12Ω2 = 0 f21Ω1 + f22Ω2 = 0 (4.12)

In order to obtain a nontrivial or non-zero solution, the determinant of the coefficient matrix
obtained from Eq. (4.12) must vanish. Therefore, we have

∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣

= 0 (4.13)

Equation (4.13) is a quadratic equation from which we get two modes of vibration ω1 (first
mode) and ω2 (second mode).

5. Results and discussion

In the calculations, the following parameters are used: Y0 = 7.08 · 10
10 n/m2, ν0 = 0.345,

ρ = 2.80 · 103 kg/m3, l0 = 0.01m.

Figure 2 shows the vibrational frequency corresponding to the nonhomogeneity constant m
for a fixed value of the aspect ratio a/b = 1.5 and for the following combination of the tapering
parameter β and thermal gradient α (β = α = 0.0, β = α = 0.6).

Fig. 2. Vibrational frequency ω corresponding to nonhomogeneity m

The frequency of mode of vibration increases with the increasing value of the nonhomoge-
neity constant m for both the combination of the tapering constant β and thermal gradient α.
The rate of the increment is very small (almost constant) due to circular variation in nonhomo-
geneity. When β = α = 0.6, the first mode frequency is slightly decreasing as shown in Fig. 2.
The frequency also increases when the combined value of the tapering constant β and thermal
gradient α varies from 0.0 to 0.6.

The frequency of vibration corresponding to the thermal gradient α for a fixed value of the
aspect ratio a/b = 1.5 is presented in Fig. 3 for the following combination of the nonhomogeneity
constant m and the tapering constant β (β = m = 0.0, β = m = 0.6).

The frequency of both modes decreases when temperature variation in the plate increases
from 0.0 to 0.8. It is also noted that when the combined value of the tapering constant β and
nonhomogeneity constant m increases from 0.0 to 0.6, the frequency increases.
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Fig. 3. Vibrational frequency ω corresponding to thermal gradient α

Figure 4 provides the vibrational frequency for different values of the aspect ratio a/b for the
following combination of the tapering constant β, thermal gradient α and the nonhomogeneity
constant m (β = α = m = 0.2, β = α = m = 0.4).

Fig. 4. Vibrational frequency ω corresponding to aspect ratio a/b

From Fig. 4, it is noticed that frequency of both modes of vibration increases rapidly with
an increasing value of the aspect ratio a/b. Also a very small increment is noted in both modes
when the combined value of the tapering constant β, thermal gradient α and the nonhomogeneity
constant m increases from 0.2 to 0.4

6. Comparison of results

A comparison of the frequency of modes from the present paper with those obtained by Khanna
and Kaur (2014) is presented in Tables 1 and 2.
Table 1 provides the comparison of the frequency of modes with Khanna and Kaur (2014)

corresponding to the nonhomogeneity constant m for the following cases: 1) β = α = 0.0,
2) β = α = 0.2, 3) β = α = 0.6.
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Table 1. Comparison of the mode frequencies of the present paper with Khanna and Kaur
(2014) corresponding to the nonhomogeneity constant m

m
β = α = 0.0 β = α = 0.2 β = α = 0.6
ω1 ω2 ω1 ω2 ω1 ω2

0.00
64.77 255.98 69.67 275.29 79.47 313.50
64.77 255.98 69.67 275.29 79.47 313.50

0.05
64.78 256.02 69.68 275.32 79.46 313.55
64.99 256.84 69.91 276.25 79.75 314.68

0.10
64.79 256.05 69.68 275.36 79.45 313.58
65.22 257.76 70.17 277.29 80.05 315.93

0.15
64.80 256.08 69.69 275.40 79.44 313.62
65.47 258.74 70.45 278.39 80.38 317.29

The values written in bold are from Khanna and Kaur (2014)

Table 1 provides the information that the frequency of modes in the present paper are less
when compared to the frequency obtained by Khanna and Kaur (2014) for all the three cases.
The frequencies of the present study are equal to mode frequencies obtained by Khanna and
Kaur (2014) at α = β = m = 0.0.
Tables 2 shows the comparison of the frequency of modes with Khanna and Kaur (2014)

corresponding to the aspect ratio a/b for the following cases: 4) α = β = m = 0.0, 5) α = β = 0.2,
m = 0.1.

Table 2. Comparison of the mode frequencies of the present paper with Khanna and Kaur
(2014) corresponding to the aspect ratio a/b

a/b
α = β = m = 0 α = β = 0.2, m = 0.1
ω1 ω2 ω1 ω2

0.25
24.30 99.00 26.32 108.13
24.30 99.00 26.51 108.13

0.50
26.22 104.86 28.37 113.58
26.22 104.86 28.58 114.41

0.75
30.58 120.33 33.04 130.09
30.58 120.33 33.28 131.03

1.00
38.32 149.97 41.33 161.77
38.32 149.97 41.62 162.92

1.25
49.75 195.35 53.57 210.37
49.75 195.35 53.95 211.85

1.50
64.77 255.98 69.68 275.36
74.77 255.98 70.17 277.29

The values written in bold are from Khanna and Kaur (2014)

It is noticed from the comparison that mode frequencies of the present paper are the same
as those obtained by Khanna and Kaur (2014) for case 4. But for case 5, the mode frequencies
of the present paper are less when compared to those obtained by Khanna and Kaur (2014).

7. Conclusion

In this paper, the author attempts to present a mathematical model to analyze vibration of a
nonuniform and nonhomogeneous rectangular plate under a temperature field. From the results
and discussion and comparison, the author concludes as in the following:
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• The mode frequencies are less in the case of circular variation in nonhomogeneity (present
paper) when compared to exponential variation in nonhomogeneity (Khanna and Kaur,
2014) as shown in Table 1. The mode frequencies are the same with the frequencies obtained
by Khanna and Kaur (2014) when α = β = m = 0.0.

• The mode frequencies are same with frequencies obtained by Khanna and Kaur (2014)
corresponding to the aspect ratio a/b when the nonhomogeneity constant is kept zero i.e.,
m = 0. But when the nonhomogeneity is not zero (m = 0.1) then the frequencies of the
present paper are less in comparison with the modes obtained by Khanna and Kaur (2014)
as shown in Table 2.

• The variation in the frequencies are less due to circular variation in nonhomogeneity as
shown in Fig. 2.

• The vibration frequency decreases due to bilinear temperature variation in the plate as
shown in Fig. 3.
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